POLYISO INSULATION: THE FOUNDATION FOR 21ST CENTURY ROOF SYSTEMS

John B. Letts
Technical Director, Insulations
Firestone Building Products

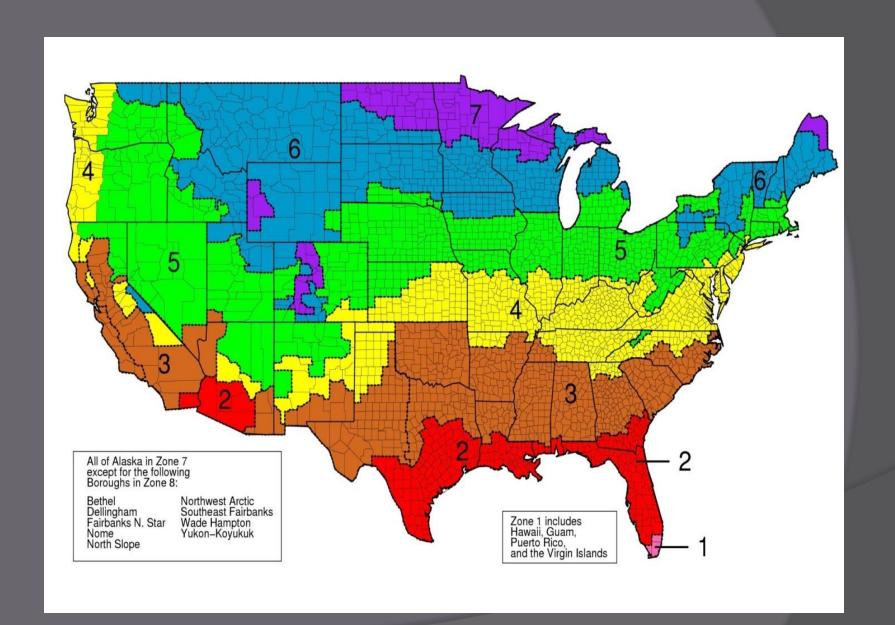
Agenda

- 1. Insulation Overview
- 2. Energy Efficiency & Higher R-Values
- 3. Energy Efficiency & The Reroofing Challenge
- 4. Environmentally Friendly Polyiso
- 5. Enhanced Understanding and Testing of Dimensional Stability
- 6. High Density Polyiso Cover Boards
- 7. Conclusions

- High prices of energy
 - Insulation never more important
- Saves Money

- High prices of energy
 - Insulation never more important
- Saves Money
- Reduces a Country's Dependence on Foreign
 Oil / National Security Issues

- High prices of energy
 - Insulation never more important
- Saves Money
- Reduces a Country's Dependence on Foreign Oil / National Security Issues
- Energy Efficiency is Key
- Ultimate Goal: "Passive Building"!?


- High prices of energy
 - Insulation never more important
- Saves Money
- Reduces a Country's Dependence on Foreign Oil / National Security Issues
- Energy Efficiency is Key
- Ultimate Goal: "Passive Building"!?
- Today's Commercial Roof Requirements for Insulation are More Demanding and Complex
 - High R-Values / Minimize Thickness
 - More Durable
 - More Environmentally Friendly

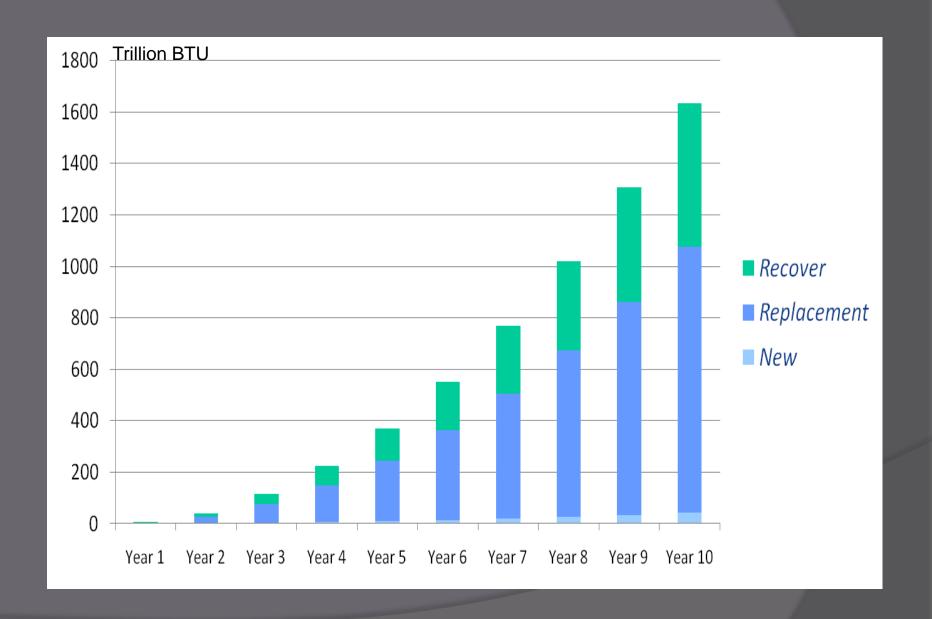
Energy Efficiency – Higher R-Values

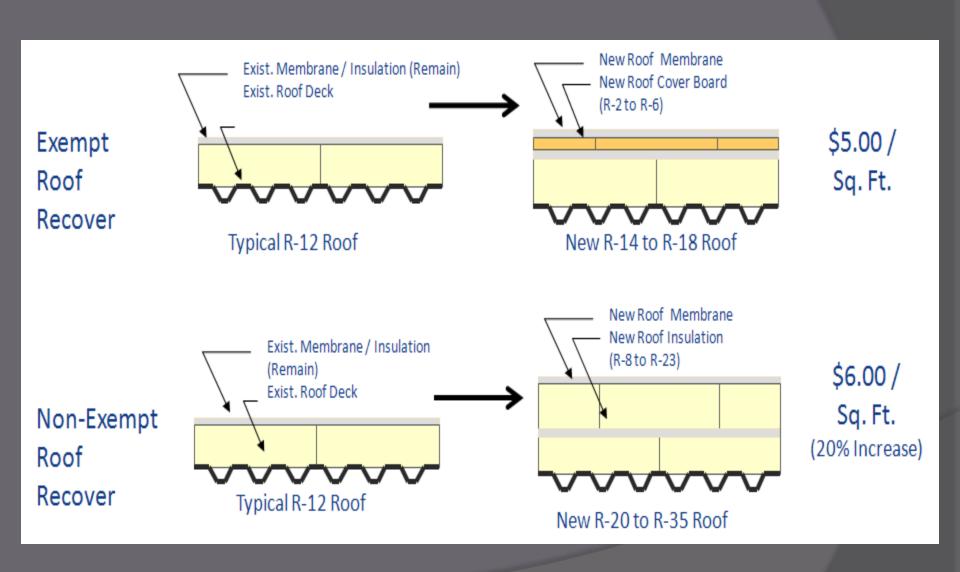
- ASHRAE 90.1 2007
 - Approx. 35% higher than ASHRAE 90.1 2004

Energy Efficiency – Higher R-Values

- ASHRAE 90.1 2007
 - Approx. 35% higher than ASHRAE 90.1 2004
- 2012 IECC (International Energy Conservation Code)
 - **35%** higher than ASHRAE 90.1 2007
 - **80%** higher than ASHRAE 90. 1 2004

Climate Zone	ASHRAE 90.1 - 2004	ASHRAE 90.1 - 2007	ASHRAE 189.1 - 2009	IECC - 2012
1	1.76 (10)	2.64 (15)	3.52 (20)	3.52 (20)
2	2.64 (15)	3.52 (20)	4.40 (25)	3.52 (20)
3	2.64 (15)	3.52 (20)	4.40 (25)	3.52 (20)
4	2.64 (15)	3.52 (20)	4.40 (25)	4.40 (25)
5	2.64 (15)	3.52 (20)	4.40 (25)	4.40 (25)
6	2.64 (15)	3.52 (20)	5.28 (30)	5.28 (30)
7	2.64 (15)	3.52 (20)	6.16 (35)	6.16 (35)
8	2.64 (15)	3.52 (20)	6.16 (35)	6.16 (35)
Status	"Old Code"	"Current Code"	"Green Code"	"Next Code"


Million Sq. Ft.


- Roof Recover 700 MM sq ft (28%)
 - Roof Replacement 1,300 MM sq ft (52%)

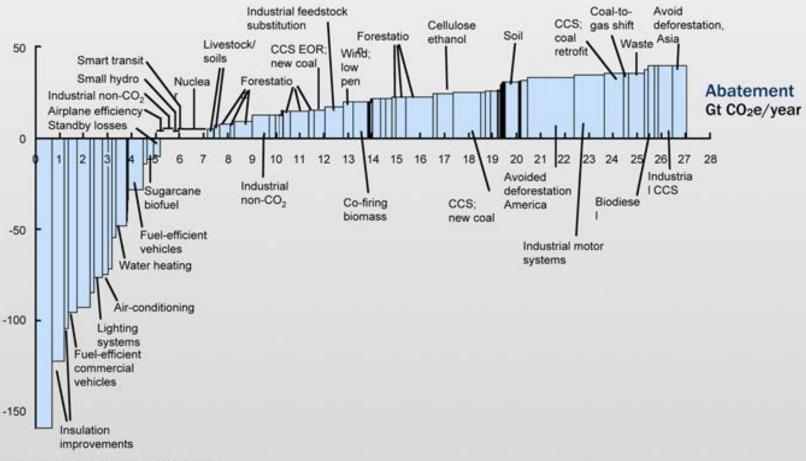
- Reroofing Constitutes the Largest Portion of Commercial Roofing
- Roof Recover is Exempt from 2012 IECC
- Huge Opportunity

- Reroofing Constitutes the Largest Portion of Commercial Roofing
- Reroofing is exempt from 2012 IECC
- Huge Opportunity
- Dr. Jim Hoff Paper
 - Research Director, Center for Environmental Innovation in Roofing
 - "Nonresidential Roofing and National Building Energy Transformation: Opportunities, Barriers and Strategies
 - www.roofingcenter.org

- Reroofing Constitutes the Largest Portion of Commercial Roofing
- Reroofing is exempt from 2012 IECC
- Huge Opportunity
- Dr. Jim Hoff Paper
 - Research Director, Center for Environmental Innovation in Roofing
 - "Nonresidential Roofing and National Building Energy Transformation: Opportunities, Barriers and Strategies
 - www.roofingcenter.org
- Cost Barrier

- Reroofing Constitutes the Largest Portion of Commercial Roofing
- Reroofing is exempt from 2012 IECC
- Huge Opportunity
- Dr. Jim Hoff Paper
 - Research Director, Center for Environmental Innovation in Roofing
 - "Nonresidential Roofing and National Building Energy Transformation: Opportunities, Barriers and Strategies
 - www.roofingcenter.org
- Cost Barrier
- Include all commercial roofs in the energy code

Environmental Friendly


- Recycling Status
 - Std 2" Polyiso
 - 24% Post Consumer Recycled Content
 - 15% Post Industrial Recycled Content
 - Preliminary Work Recycling Foam into Raw Materials
 - Reusing Polyiso Boards in Reroofing Jobs

Environmental Friendly

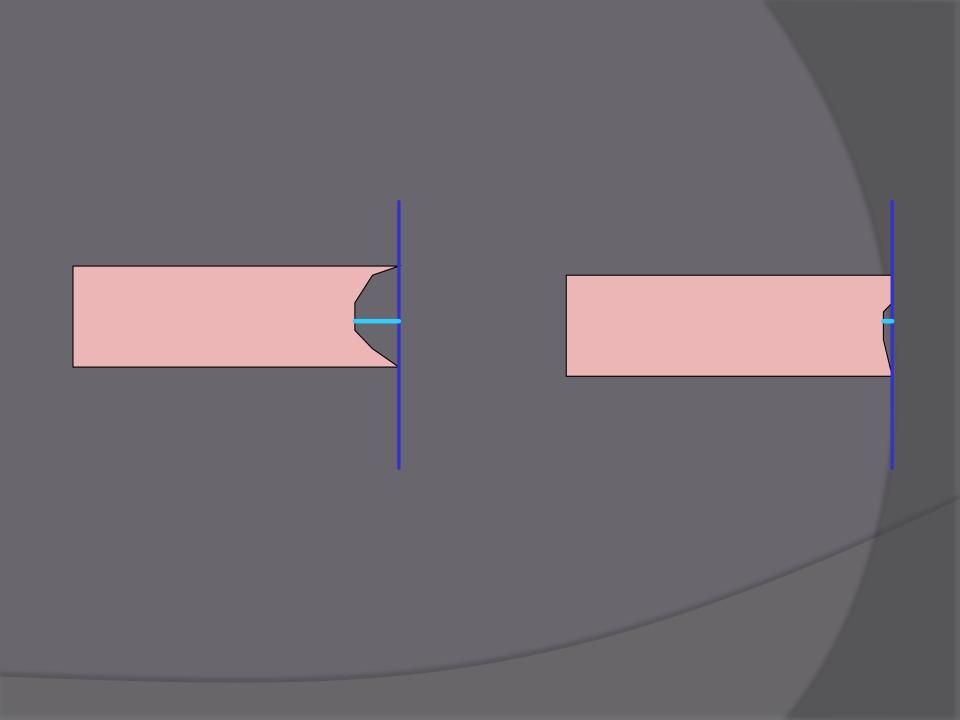
- Recycling Status
 - Std 2" Polyiso
 - 24% Post Consumer Recycled Content
 - 15% Post Industrial Recycled Content
 - Preliminary Work Recycling Foam into Raw Materials
 - Reusing Polyiso Boards in Reroofing Jobs
- Carbon Dioxide Reduction
 - McKinsey Report
 - Insulation is cost effective

THE COST CURVE PROVIDES A "MAP" OF ABATEMENT OPPORTUNITIES

Cost of abatement, 2030, €/tCO2e*

* Cubic feet of carbon equivalents.

Source: McKinsey and Vattenfall analysis


Environmental Friendly

- Recycling Status
 - Std 2" Polyiso
 - 24% Post Consumer Recycled Content
 - 15% Post Industrial Recycled Content
 - Preliminary Work Recycling Foam into Raw Materials
 - Reusing Polyiso Boards in Reroofing Jobs
- Carbon Dioxide Reduction
 - McKinsey Report
 - Insulation is cost effective
- Life Cycle Analysis
 - Environmental payback in approx. 4 weeks

- Dimensional Stability is an Important Physical Property
 - Problems are rare but when they happen they can be frustrating, time consuming and expensive

- Dimensional Stability is an Important Physical Property
 - Problems are rare but when they happen they can be frustrating, time consuming and expensive
- ASTM C1289/D2126 Test Boards at -40C/-40F
 - 12" by 12" Samples
 - Focus is on Overall Sample Dimensional Stability

- Dimensional Stability is an Important Physical Property
 - Problems are rare but when they happen they can be frustrating, time consuming and expensive
- ASTM C1289/D2126 Test Boards at -40C/-40F
 - 12" by 12" Samples
 - Focus is on Overall Sample Dimensional Stability
- Most Dimensional Stability Problems have Edge Collapse

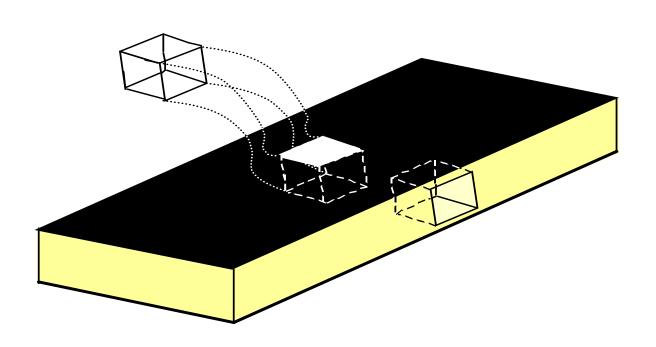
- Dimensional Stability is an Important Physical Property
 - Problems are rare but when they happen they can be frustrating, time consuming and expensive
- ASTM C1289/D2126 Test Boards at -40C/-40F
 - 12" by 12" Samples
 - Focus is on Overall Sample Dimensional Stability
- Most Dimensional Stability Problems have Edge Collapse
- Edge Collapse is "Ground Zero" in Eliminating Most Dimensional Stability Problems

- Dimensional Stability is an Important Physical Property
 - Problems are rare but when they happen they can be frustrating, time consuming and expensive
- ASTM C1289/D2126 Test Boards at -40C/-40F
 - 12" by 12" Samples
 - Focus is on Overall Sample Dimensional Stability
- Most Dimensional Stability Problems have Edge Collapse
- Edge Collapse is "Ground Zero" in Eliminating Most Dimensional Stability Problems
- ASTM C1289 / D2126
 - 12" by 12" Samples don't have to include the edges
 - Averaging the results minimizes the effect of the edges

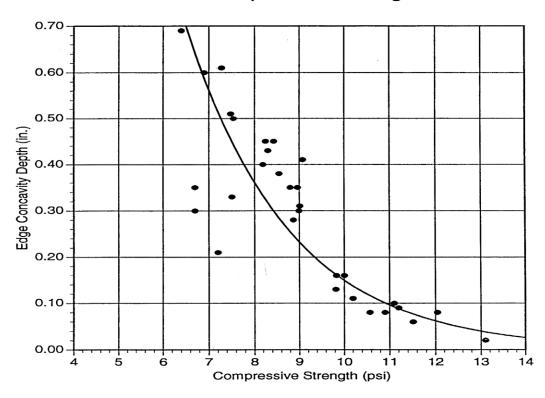
- Dimensional Stability is an Important Physical Property
 - Problems are rare but when they happen they can be frustrating, time consuming and expensive
- ASTM C1289/D2126 Test Boards at -40C/-40F
 - 12" by 12" Samples
 - Focus is on Overall Sample Dimensional Stability
- Most Dimensional Stability Problems have Edge Collapse
- Edge Collapse is "Ground Zero" in Eliminating Most Dimensional Stability Problems
- ASTM C1289 / D2126
 - 12" by 12" Samples don't have to include the edges
 - Averaging the results minimizes the effect of the edges
- Why are the 8-foot Edges the Most Susceptible Part of the Board to Dimensional Stability Problems?

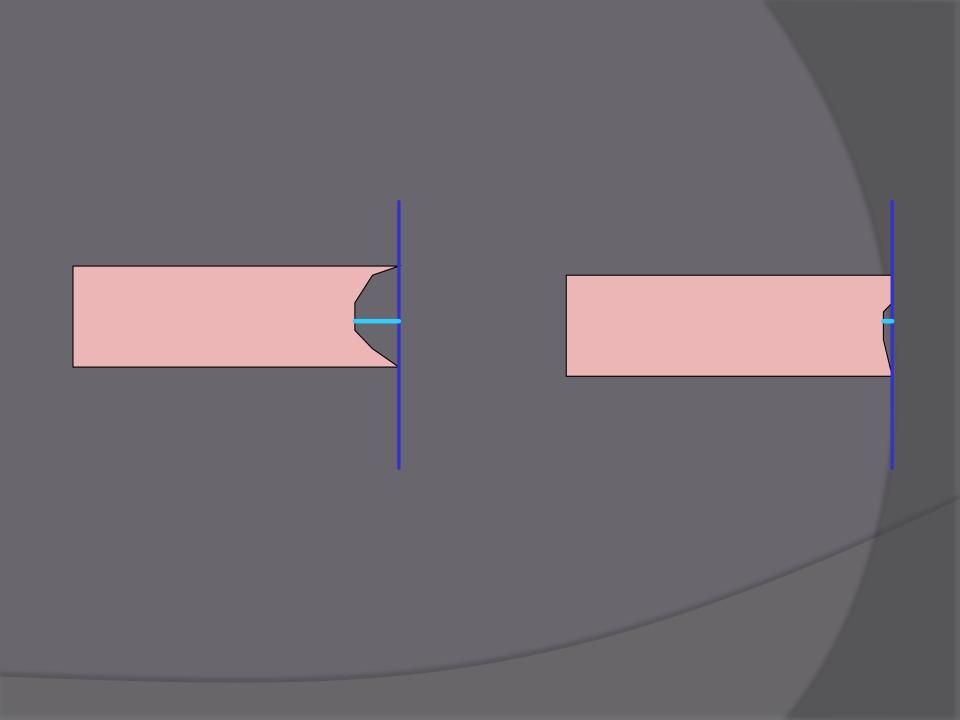
- Back To Basics
 - PV = nRT (Ideal Gas Law)

- Back To Basics
 - PV = nRT (Ideal Gas Law)
 - At Manufacture & 2 Weeks <u>After Manufacture</u>

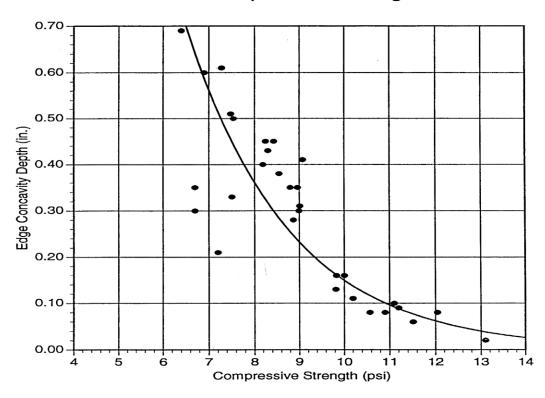

- Back To Basics
 - PV = nRT (Ideal Gas Law)
 - At Manufacture & 2 Weeks <u>After</u> Manufacture
 - $P_m = T_m \quad P_{2w} = T_{2w}$

Back To Basics


- PV = nRT (Ideal Gas Law)
- At Manufacture & 2 Weeks <u>After Manufacture</u>
- $P_m = T_m \quad P_{2w} = T_{2w}$
- Foam / Bundle Temperature is Greater than 300 F
- Formation of Key Reaction (Trimerization) is Most Effective at 160 F (71 C)


- Back To Basics
 - PV = nRT (Ideal Gas Law)
 - At Manufacture & 2 Weeks <u>After</u> Manufacture
 - $P_m = T_m \quad P_{2w} = T_{2w}$
 - Foam / Bundle Temperature is Greater than 300 F
 - Formation of Key Reaction (Trimerization) is Most Effective at 160 F (71 C)
- Edges of the Board Don't Reach this Temperature

- Back To Basics
 - PV = nRT (Ideal Gas Law)
 - At Manufacture & 2 Weeks <u>After</u> Manufacture
 - $P_m = T_m \quad P_{2w} = T_{2w}$
 - Foam / Bundle Temperature is Greater than 300 F
 - Formation of Key Reaction (Trimerization) is Most Effective at 160 F (71 C)
- Edges of the Board Don't Reach this Temperature
- Measure of the Strength of the Foam in the Cross Machine or Z Direction Correlates to Amount of Reaction and Crosslinking



Relation of Edge Collapse to Foam Compressive Strength

Relation of Edge Collapse to Foam Compressive Strength

Continuous Monitoring During Manufacture

- Continuously Measure Compressive Strength in the Cross Machine Direction (Z- Direction) called in-line ZCS
- Operator adjust equipment and / or formulation to maintain high ZCS numbers
- Continuous monitoring of Boards 2" and Greater

Is it possible for a board with edge collapse to recover?

- Is it possible for a board with edge collapse to recover?
- Anecdotal example

- Is it possible for a board with edge collapse to recover?
- Anecdotal example
- Air Diffusion is Key
 - Air Diffuses in Over the Course of a Year or So
 - Pentanes Have Half Lives of 75 to 100 Years

- Is it possible for a board with edge collapse to recover?
- Anecdotal example
- Air Diffusion is Key
 - Air Diffuses in Over the Course of a Year or So
 - Pentanes Have Half Lives of 75 to 100 Years
- Laboratory Studies
 - Samples Three Weeks at 100 F or 150 F

- Is it possible for a board with edge collapse to recover?
- Anecdotal example
- Air Diffusion is Key
 - Air Diffuses in Over the Course of a Year or So
 - Pentanes Have Half Lives of 75 to 100 Years
- Laboratory Studies
 - Samples Three Weeks at 100 F or 150 F
- Survey of Old Roofs

High Density Polyiso Cover Boards

- Need for a Lighter Weight, Tougher, Higher R-Value, Dimensionally Stable Cover Board
- Higher Density, Specially Modified Polyiso foam
- Combined with Coated Fiberglass Mat Facers
- Toughness: Approximately 6000 Passes on the RLE at 20 psi

High Density Polyiso Cover Boards

- Need for a Lighter Weight, Tougher, Higher R-Value, Dimensionally Stable Cover Board
- Higher Density, Specially Modified Polyiso foam
- Combined with Coated Fiberglass Mat Facers
- Toughness: Approximately 6000 Passes on the RLE at 20 psi
- Good fire performance but not quite as good as the fiberglass mat gypsum based board
- Cold Applied Asphalt but No Hot Asphalt

Property	Fiberglass Mat Faced Polyiso (HD)	Fiberglass Mat Facer Gypsum	Woodfiber
Thickness, mm (in)	25.4 - 50.8 (¼ - ½)	25.4 (¼)	50.8 (1/2)
R-Value	0.176 - 0.44 (1.0 - 2.5)	0.049 (0.28)	0.246 (1.4)
Board Weight 1.2 m X 2.4 m (4' X 8'), Kg (lb)	5.44 (12)	17.41 (38.4)	9.29 (20.5)
Ease of cutting*	Yes	No	No
Mold resistance (D 3273)	Yes	Yes	No
Water Absorption	<3%	10%	10%
Dimensional Stability	Excellent	Excellent	Excellent; poor if wet

^{*}Contractor's comments

Conclusions

- The IECC 2012 Code: Approximately 80% Higher R-Values Compared to ASHRAE 90.1 – 2004
- Reroofing Offers a Huge Opportunity for Energy Savings with Changes in the Energy Code
- Polyiso Insulation is an Environmentally Friendly Product

Conclusions

- The Physics of Polyiso Dimensional Stability was Elucidated and Innovative Tests Developed to Ensure Boards are Dimensionally Stable in the Field
- High Density Cover Boards Offer the Roofing Professional
 - Light Weight
 - Higher R-Value
 - High Performance and Strength
 - Mold Resistance
 - Toughness and Durability