New Generation Solar Reflective Shingles

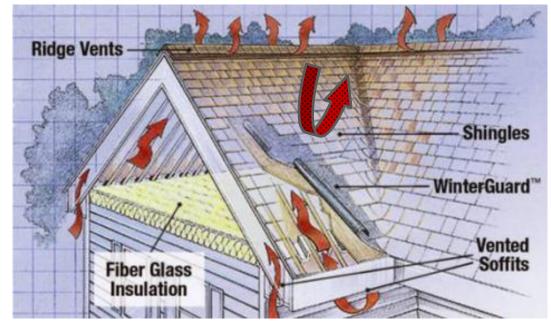
Ming L. Shiao, Ph.D. and Husnu M. Kalkanoglu Roofing Group, CertainTeed Corp. Blue Bell, PA, USA

NRCA International Roofing Symposium September 7~9, 2011, Washington D.C.

- Why solar reflective (SR) roofs?
- Current asphalt shingle technology
- Color versus solar reflectance
- Next generation solar reflective shingles
- Field testing and aged performance
- Summary

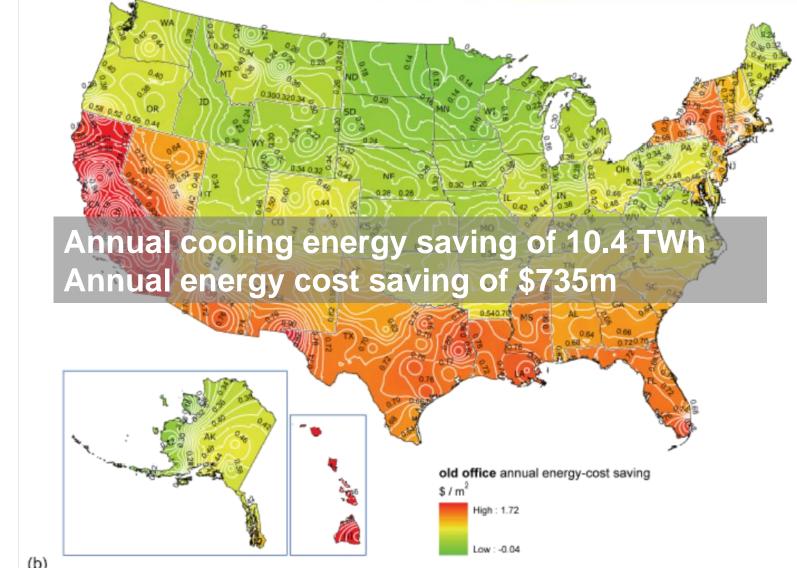
\mathbf{r}
Ο
0
\mathbf{O}

Why solar reflective (SR) roofs?


Higher energy efficiency

- US spends ~\$40 billion/year to cool buildings

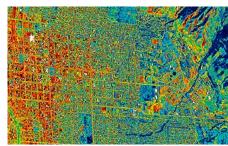
- 1/6 of all energy consumed
- Reduced solar heat flux into conditioned space may reduce AC load


Approaches

- Insulation
- Ventilation
- Radiant barrier
- SR Roof

Potential benefits of cool roofs on commercial buildings Levinson and Akbari

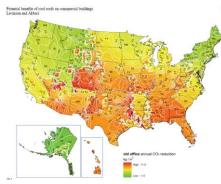
Data Source: Ronnen Levinson, Hashem Akbari, in Energy Efficiency, 3(1), pp.53~109



Why solar reflective (SR) roof?

- Achieve higher energy efficiency
 - US spends \$40 billion/year to cool buildings (1/6 of all energy consumed)
 - Reduce solar heat flux into conditioned space may reduce the AC load

Mitigate "Urban Heat Island" effects


- Increase surface Albedo to promote "global cooling"
- Potential reduction in CO₂ emissions
- Potential suppression in "smog" formation reduce NO_x, SO₂ emissions

Source: Center for Architecture Science and Ecology

Source: NASA Defense Meteorological Satellites Program

Data Source: Ronnen Levinson, Hashem Akbari, in *Energy Efficiency*, 3(1), pp. 53 ~ 109

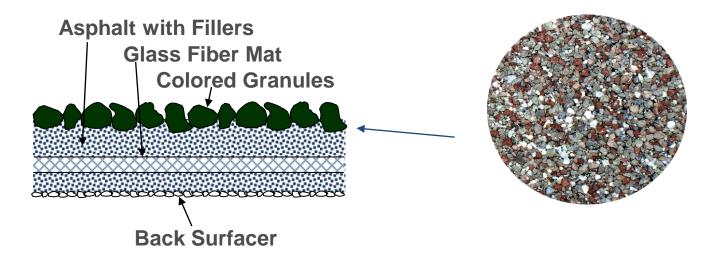
Global Cooling: Increasing SR to 0.25 would yield significant offset of CO₂ emission

Row	Item	Value
1.	Area of the earth	$510 \times 10^{12} \text{ m}^2$
2.	Land area (29% of Earth area)	$147 \times 10^{12} \text{ m}^2$
3.	Dense and developed urban areas	$1.5 \times 10^{12} \mathrm{m}^2$
	(1% of land area)	
4.	Roof area (25% of urban area)	$3.8 \times 10^{11} \mathrm{m}^2$
5.	Paved surface area (35% of urban area)	$5.3 \times 10^{11} \mathrm{m}^2$
6.	Potential emitted CO ₂ offset for cool	24 Gt CO2
	roofs [Row 4 × Row 6a Table 4]	
7.	Potential emitted CO ₂ offset for cool	20 Gt CO ₂
	pavements [Row 5 × Row 8a Table 4]	
8.	Total potential emitted CO ₂ offset for	44 Gt CO ₂
	cool roofs and cool pavements	
	[Row 6 + Row 7]	
9.	Projected 2025 world CO ₂ emissions ^a	37 Gt CO ₂ /year

Source: H. Akbari, S.Menon, A. Rosenfeld, *Climate Change*, 94, pp. 275~286

Asphalt shingles – current technology

• A proven choice of roofing materials


- Lasting performance
- Aesthetically pleasing
- Class A fire rating
- Ease of installation
- Choice of colors & styles
- Low cost to consumers

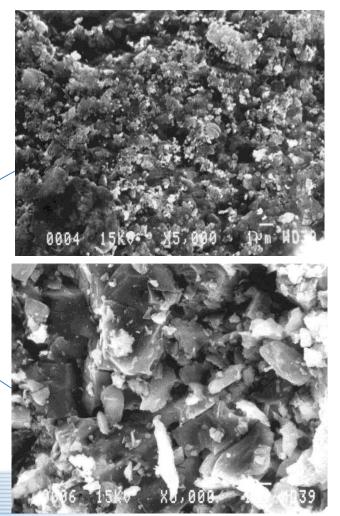
Asphalt shingles – current technology

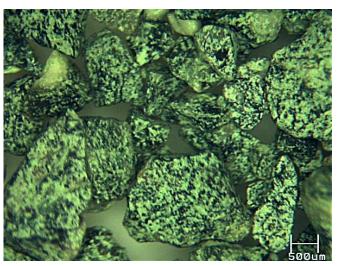
 Traditional asphalt shingles are not designed to be solar reflective

 A large portion of shingle surface is covered by roofing granules

Roofing granules – current technology

- Traditional roofing granules are designed for functionalities & aesthetics, but not for SR
 - Protecting asphalt from UV radiations
 - colored for aesthetics
 - Earth tone colors are among the popular choices

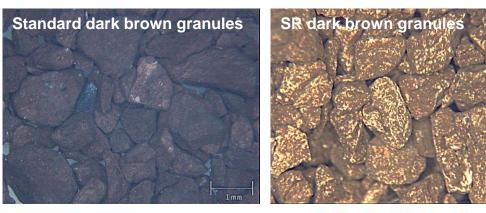

Color	L*	a*	b*	Averaged solar
Description	-			reflectance, %
Black	22.91	-0.11	-0.67	4
Gray	31.34	0.05	0.32	6.2
Dark brown	26.90	5.66	8.08	5.9
Brown	39.97	13.29	18.98	15.0
Buff	41.50	10.67	21.19	15.4
Olive	36.25	0.33	5.75	10.0
Light gray	48.53	-3.66	2.84	16.8
Light buff	55.92	6.41	19.65	25.4
White	67.54	-0.44	1.28	31.3



Granules for solar reflective roofs

 Roofing granules have rough surfaces that may reduce solar reflectivity

Standard non-SR granules in light grey color under microscope

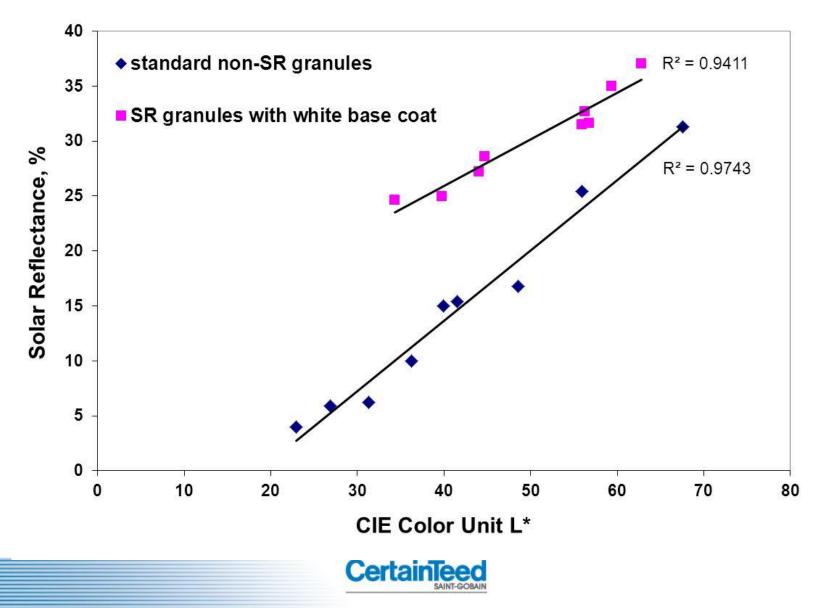

SR roofing granules: challenges

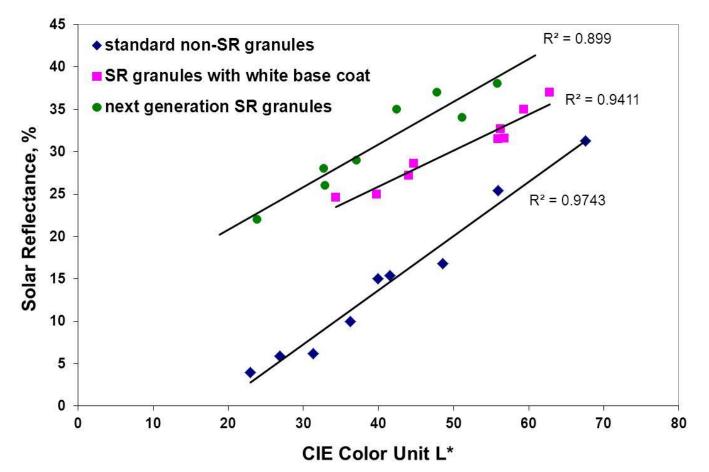
• Color vs. SR: how to maintain the color and the coolness at the same time?

SR roofing granules: current technology

- "cool" colorants to enhance the SR
 - Commercially available "cool" pigments
 - High cost; limited in colors
 - Improvements are not drastic
- Use of white reflective base coat followed by a 2nd color coat
 - More efficient for SR increase
 - Higher cost; loss of color saturation

solar reflectance = 0.08 thermal emittance = 0.85 roof temp – air temp = 45°C (81°F)


cool


solar reflectance = 0.27 thermal emittance = 0.85 roof temp – air temp = 36°C (65°F)

Cool Pigment Database: LBNL Cool Colors Project by Dr. Ronnen Levinson

SR granules: current technology

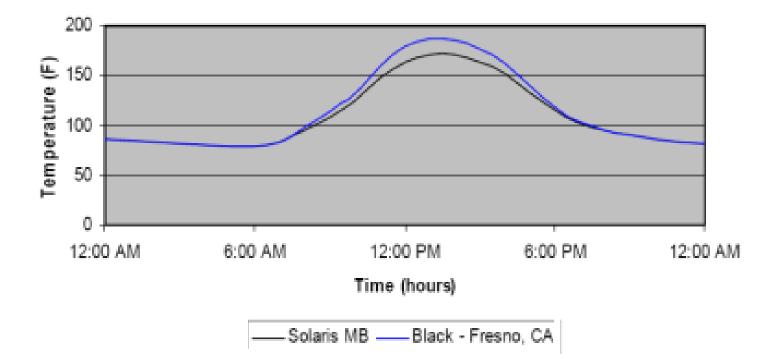
SR granules: new generation

 Improved coating efficiency yields SR roofing granules that meet Title 24 and Energy Star® requirements in traditional earth-tone colors

Certain

New SR shingles in traditional earth-tone colors

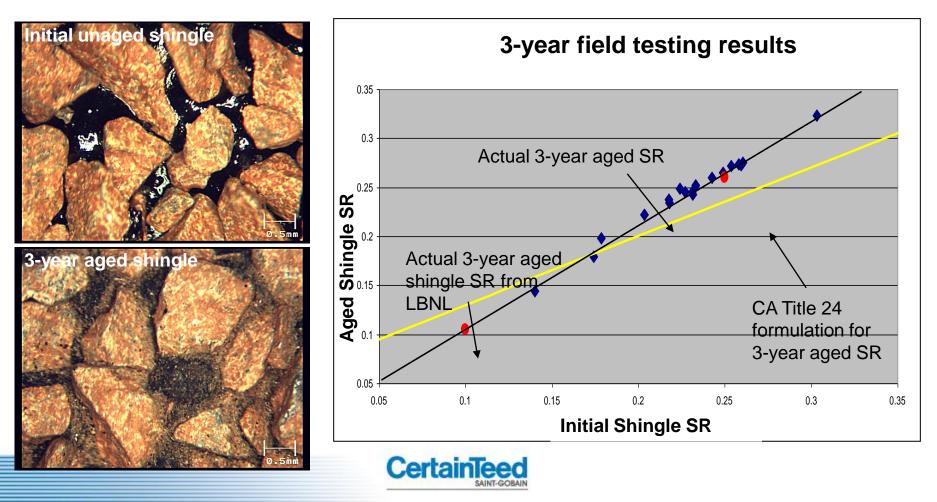
Potential energy savings by the new generation SR shingles:


 DOE Cool Roof calculator shows typically ~10% saving in cooling load

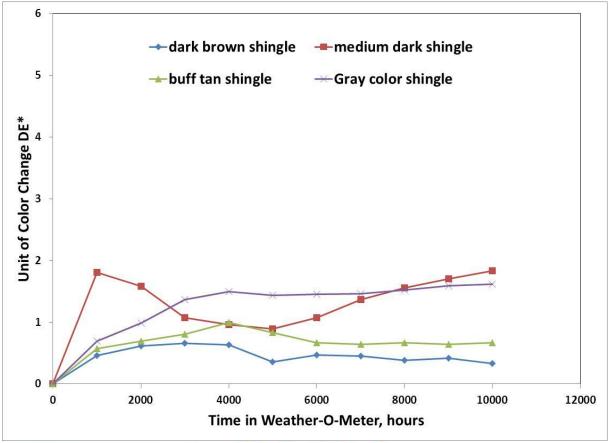
		Cooling Load				
		Base	Solaris	Difference	Difference	
Fresno, CA	Energy Costs	(Btu/ft ² yr)	(Btu/ft ² yr)	(Btu/ft ² yr)	(%)	
R19	Summer Elec. \$/KWH	3515	3143	372	10.6	
R30	0.1434	2227	1986	241	10.8	
R38	Natural Gas \$/THERM	1785	1589	196	11.0	
	1.173					
Elpaso, TX						
R19	Summer Elec. \$/KWH	3904	3501	403	10.3	
R30 0.1258		2479	2218	261	10.5	
R38	Natural Gas \$/THERM	1991	1779	212	10.6	
	1.384					

New generation SR shingles

Shingle Surface Temperature Comparison - August 15th (Max Def Moire Black)



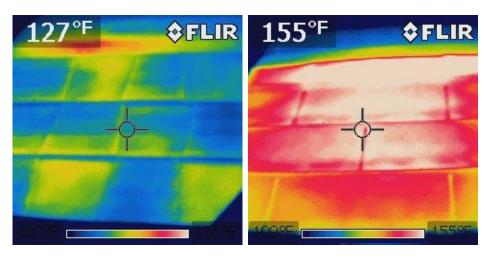
 WUFII simulations predict ~10° cooler roof temperatures


Field testing and aged performance

- Outdoor exposure testing (hot/wet, hot/dry, cool/wet climates)
- Excellent color and SR retention after 3 years

New generation SR shingles: aging performance

• Accelerated artificial aging test also confirms the color and solar reflectance are maintained



Future of solar reflective shingles: Shingles that go beyond 25% SR

• Shingles SR values ≥ 40%

IR camera image showing temperature differences between traditional non-SR shingles and shingles with SR at 40%

Summary

- The solar reflectance of traditional shingles can be improved by increasing the solar reflectance of their covering roofing granules
- With improved coating technology, new generation solar reflective roofing granules can deliver both the high SR and desirable earth-tone colors
- 3-year field weathering tests in various climates show that the SR and color are maintained.
- Significant energy savings can be accomplished with the use of solar reflective shingles

Thank You !

