#### **Thermal Performance Evaluation of Innovative Metal Building Roof Assemblies**

#### Daniel J. Walker, P.E.

Metal Building Manufacturers Association, Cleveland, Ohio

#### Dr. Abdi Zaltash

Oak Ridge National Laboratory, Oak Ridge, Tennessee

#### **Jerry Atchley**

Oak Ridge National Laboratory, Oak Ridge, Tennessee







#### Disclaimer

- MBMA does not promote the use of any particular type or combination of insulations to meet the codes
- The roof systems shown are still in development and may not be appropriate for use at this time



# **Anatomy of a Metal Building**





## **Metal Building Applications**



**Sports Facility** 



Health Care Facility



**Community Facility** 



Aircraft Hangar



Restaurant



Office Building



#### Introduction – Why This Work Was Needed

- The demand for increased energy efficiency in commercial building energy codes & standards
  - I-Codes
    - International Energy Conservation Code (IECC)
    - International Green Construction Code (IgCC)
  - ASHRAE
    - 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings
    - 189.1 Standard for the Design of High-Performance Green Buildings Except Low-Rise Residential Buildings



#### **What Drives Code Development?**

#### Building Codes

- IBC, NFPA 5000 are life-safety codes
- Minimum standards are set to protect loss of life
- Energy Codes
  - IECC, ASHRAE 90.1 set minimum requirements for energy conservation → this is not a life-safety issue
  - Minimums can be set in two ways:
    - 1. Economic Justification (i.e. cost effectiveness)
    - 2. Legislative Mandates (the law)



#### **Construction is Getting More Complicated**

- In order to meet the coming energy codes, multiple layers of various insulation types will be required
  - Example is fiberglass insulation in walls with rigid board on the exterior
- The demand for greater efficiency has pushed insulation levels beyond the cavity depth
- Education of design professionals, building officials and contractors is needed to ensure that performance levels are being achieved



#### **Assembly U-Factors vs R-Values**

- U = Thermal Transmittance
  - Measured in Btu/h•ft<sup>2</sup>•<sup>°</sup> F
- U is the reciprocal of R (U = 1/R)
  - Technically true, but for insulation only
  - Assemblies are comprised of many R's that vary
- So really, U-Factor = 1/R<sub>Total</sub>
- How are U-Factors derived?
  - For MBS Only from hot box tests or computer modeling
  - You can not add R-values of insulation unless they are continuous and uncompressed



#### **More About U-Factors**

- Lower U-Factors have better performance
- Higher U-Factors have worse performance
- Therefore, U-0.04 is better than U-0.05
  - How much better?
    - U-0.04 = R-25
    - U-0.05 = R-20
- Why should we use U-Factors?
  - R-values don't tell the whole story
  - U-Factors allow flexibility in what you can provide
  - Codes & standards are moving toward U-Factors
    - 2009 IECC added U-Factors, ASHRAE always had them
    - Advantage of using U-factors:
      - COMcheck has trade-off capabilities for roofs and walls
      - You can use U-factors to trade-off roof and wall insulation as well as fenestration performance



#### **Evaluation of Metal Roofing Systems-Scope of Work**

- Cooperative Research with ORNL & MBMA
  - MBMA provided design concepts and donation of materials and labor
- Promising roofing systems with improved thermal performance over the levels accepted in the ASHRAE 90.1 standard
  - Evaluation in the Large Scale Climate Simulator (LSCS) ASTM C1363
  - ➢ Up to 10 systems
  - Evaluation at winter and summer conditions
  - > U values of 0.040 (R-25) or better
- Identify more cost-effective ways of constructing "next generation" metal roofing systems with improved thermal
  Man performance



## Why This Work is Needed

- Codes & standards developing entities are pushing for higher insulation assemblies
  - ASHRAE 90.1, IECC
  - ASHRAE 189.1, IgCC, LEED
- Current code requirements have already "maxed out" the known performance of common systems
- Some of the "high" performance systems in codes were developed using R-values long ago and may not be the best option now



#### IECC 2009 – Metal Building Insulation (Roofs)

| PANEL CLIP            |                                                   |                 | TABLE 502.2(2)<br>BUILDING ENVELOPE REQUIREMENTS-OPAQUE ASSEMBLIES                                                                                                                                                    |
|-----------------------|---------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THERMAL SPACER        |                                                   |                 |                                                                                                                                                                                                                       |
| <u></u>               | <u></u>                                           | ROOFS           | DESCRIPTION                                                                                                                                                                                                           |
|                       |                                                   | R-19            | Standing seam roof with single fiberglass insulation layer.                                                                                                                                                           |
|                       | PURLIN                                            |                 | This construction is R-19 faced fiberglass insulation batts draped perpendicular over the purlins. A minimum R-3.5 thermal spacer block is placed above the purlin/batt, and the roof deck is secured to the purlins. |
|                       |                                                   |                 | Standing seam roof with two fiberglass insulation layers.                                                                                                                                                             |
| PANEL CLIP            | ROOF PANEL                                        |                 |                                                                                                                                                                                                                       |
| THERMAL SPACER $\neg$ |                                                   | R-13 + R-13     | The first <i>R</i> -value is for faced fiberglass insulation batts draped over purlins.                                                                                                                               |
| BLOCK                 | - INSULATION                                      | R-13 + R-19     | The second <i>R</i> -value is for unfaced fiberglass insulation batts installed parallel<br>to the multiple. A minimum <b>R</b> 2.5 thermal spacer block is placed above the                                          |
|                       | †-/                                               |                 | purlin/batt and the roof deck is secured to the purlins                                                                                                                                                               |
|                       |                                                   |                 |                                                                                                                                                                                                                       |
|                       |                                                   |                 | Filled cavity indergrass insulation.                                                                                                                                                                                  |
|                       |                                                   |                 | A continuous vapor barrier is installed below the purlins and uninterrupted by                                                                                                                                        |
|                       | PURLIN                                            | R-11 + R-19 FC  | framing members. Both layers of uncompressed, unfaced fiberglass insulation                                                                                                                                           |
|                       |                                                   | 7               | rest on top of the vapor barrier and are installed parallel, between the purlins.                                                                                                                                     |
| THERMAL SPACER        |                                                   |                 | A minimum R-3.5 thermal spacer block is placed above the purlin/batt, and                                                                                                                                             |
| BLOCK                 | ROOF PANEL                                        |                 | the root deck is secured to the purifies.                                                                                                                                                                             |
|                       |                                                   | WALLS           |                                                                                                                                                                                                                       |
|                       |                                                   | R-16, R-19      | Single fiberglass insulation layer.                                                                                                                                                                                   |
|                       |                                                   |                 |                                                                                                                                                                                                                       |
|                       |                                                   |                 | The construction is faced fiberglass insulation batts installed vertically and                                                                                                                                        |
|                       |                                                   |                 | compressed between the metal wall panels and the steel framing.                                                                                                                                                       |
|                       | $\land \land \land \land \land \land \land \land$ | R-13 + R-5.6 ci | The first <i>R</i> -value is for faced fiberglass insulation batts installed                                                                                                                                          |
|                       |                                                   | R-19 + R-5.6 ci | perpendicular and compressed between the metal wall panels and the steel                                                                                                                                              |
|                       |                                                   |                 | framing. The second rated <i>R</i> -value is for continuous rigid insulation installed                                                                                                                                |
|                       |                                                   |                 | between the metal wall panel and steel framing, or on the interior of the steel                                                                                                                                       |
| (PARALLEL TO          | BENEATH PURLINS                                   |                 | nannig.                                                                                                                                                                                                               |
| PURLINS)              |                                                   |                 |                                                                                                                                                                                                                       |



# **Single Layer of Fiberglass**





#### **Double Layer Fiberglass**





14 Managed by UT-Battelle for the U.S. Department of Energy

## **Filled Cavity**





## **Liner System**



16 Managed by UT-Battelle for the U.S. Department of Energy



# **The Experiments**



#### **Steady-State Guarded Hot Box Evaluation in LSCS (ASTM** C1363)

- Standing-seam metal roofs (SSR) with purlins 4 ft oc
- LSCS provides controlled conditions above & below roof test sections
- Test module 12.5 ft square with metering area of 8 ft square
- Completed 4 test modules





## **One Basis of Comparison**

• To make an apples-to-apples comparison, we make the following comparison:

# $\Sigma R_{measured}$ / $\Sigma R_{rated}$

 For example, R-13 fiberglass between 2x4 stud wall spaced 16" o.c. (U<sub>ASHRAE</sub> = 0.089) 1 / 0.089 = R<sub>total</sub> = 11.2 11.2 / 13 = <u>86.4%</u>



# **The Assemblies**



#### **MBMA – Module 1** ✤ 3" stand off panel clips (specially fabricated for this experiment) R-13 over the purlins and R-25 between purlins with 2-5/8" expanded polystyrene thermal blocks between clips 1.25" faced polyiso board below the purlins **Result:** U-0.027 (R-SNAP TRAPEZOIDAL STANDING SEAM ROOF **3" STAND OFF PANEL** 37.17) PANFI CLIP FOR TEST #1 (1) 2" EPS THERMAL SPACER **R-13 UNFACED FIBER** BLOCK & (1) 5/8" EPS THERMAL GLASS BLANKET OVER SPACER BLOCK FOR TEST #1 PURLINS **3" STANDOFF** FOR TEST #1 UNFACED 8" (R-25) անվակակակակալութ . . . . . . . . . . . FIBER GLASS BLANKET 1-1/4" RIGID BOARD (THERMAX) 8" 16-GAUGE R-37.2/R-46 =PURLIN @ 48" O.C. NO. 12-14 SELF-DRILLING 81% Efficient Managed by UT-Battelle FASTENER W/ 1-1/2" for the U.S. Department of Energy DIA. PLASTIC WASHER

#### **MBMA – Module 2**

- 1 3/8" stand off panel clips (standard clips)
- R-13 over the purlins and R-25 between purlins with 5/8" expanded polystyrene thermal blocks between clips
  Results:
- 1.25" rigid board at the bottom of the purlins



#### **MBMA – Module 3**

- 1 3/8" stand off panel clips
- 3/8" reflective insulation over the purlins and R-25 between purlins with 1" thermal blocks between clips

**Results:** 

1.25" rigid board at the bottom of the purlins



#### **MBMA - Module 4**

- Twin skin two metal panels used, first one is metal liner over purlins
- 12" Tall roof standoff clip raises roof surface above purlins
- Zero clearance roof clip attaches to hat channels
- R-30 + R-13 fiberglass laid on top of metal liner panel



R-31/R-43 = 72% Efficient



#### **Future Plans**

Continue this collaborative work to evaluate additional modules

- Possible further investigations on parameters of the first four modules
- Improved metal building walls are also of interest to MBMA



# In Closing...

- These experiments show the potential for improving metal building roof thermal performance
- Additional work is currently being done by several stakeholders, so the data is expanding
- These experiments are for R&D purposes, and may not be viable for immediate use
  - The following are among the things not investigated in this study
    - Structural performance
    - Fire resistance
    - Durability
    - Constructability on full-scale buildings



