2011 International Roofing Symposium

Emerging Technologies and Roof System Performance

Nighttime Radiative Cooling of Low-slope Roof Systems

Presented by

Matt Dupuis

Structural Research Inc.

Topics to Cover

- Background
- Test Bed Details
- Heat Transfer
- Sky Temperature
- Terrestrial Radiation
- Field Data
- Conclusions
- Questions

Background

- MRCA PV Project
 - Observed roof surface temperatures at night below ambient every night
- Radiative Behavior of Building Surfaces
 - Basic Temperature (Goodman 1938)
 - Ponded Roofs (Clark 1981)
 - Cool Roofs and Moisture (Rose 2007)

- Constructed in 2009
- Initial goal was to observe temperature differentials created by fully adhered photovoltaic panels on varying membranes
- 3yr project
- Live data stream
 - www.sri-engineering.com/mrca

Membrane Type	Color	Thickness
EPDM	White	60 mils
ТРО	White	60 mils
Polymer-modified bitumen	White	140 mils
EPDM	Black	60 mils
ТРО	White	60 mils
PVC	Gray	45 mils
ТРО	White	60 mils

- Type T thermocouples
 - -58
- Weather station
- Radiometric Sensors
 - Pyranometer
 - Pyrgeometer
- Data Acquisition
 - NI cRIO and Lab View

- Just the very basics
 - Conduction
 - Convection
 - Radiation

Net heat flux per unit area

$$q''_{net} = q''_{conduction} + q''_{convection} + q''_{radiation}$$

• Units of $(\frac{W}{m^2})$

Conduction

$$-q"_{Conduction} = \frac{k (T_I - T_S)}{L}$$

- Convection
 - Natural convection
 - Forced convection
 - Convective Heat Transfer Coefficient
 - Jiantao, Jing et al. 2009

$$-q''_{Convection} = h_{Convection}(T_S - T_A)$$

Radiation

$$q_{radiation}^{"}$$

$$= E_{Solar} + E_{Sky} + E_{Terrestrial} - M_{Surface}$$

- E_{Solar} is zero at night!
- $E_{Terrestrial}$ is taken as zero for a low slope roof
 - More on this later
- Radiation

$$q_{radiation}^{"} = E_{Sky} - M_{Surface}$$

- Short Wave Irradiance
 - Originates from the sun
 - Includes
 - Ultraviolet (7%)
 - Visible (45%)
 - Infrared (48%)
 - Wavelengths from 300nm-2500nm

- Long Wave Irradiance
 - Covers approximately 4500nm 50,000nm
 - Emitted by all matter above absolute zero
- Sky Radiation
 - Long Wave
 - Emitted by
 - Atmospheric gases
 - Water vapor (humidity and clouds)
 - Dust and Pollutants

- Pyrgeometer
 - Sensitive to 4500nm 50,000nm
 - 150° cone
 - Reads incoming Sky Irradiance (E_{Sky})
 - Units of $(\frac{W}{m^2})$

- Typical ranges $100 \frac{W}{m^2}$ to $400 \frac{W}{m^2}$
- Varies with
 - Air temperature
 - Cloud cover
 - Pollution
- Irradiates the roof 24 hours a day
- During the day it is masked / overwhelmed by incoming solar irradiance

- Sky Irradiance is typically discussed as a Sky Temperature
 - Black body radiator
 - Stefan-Boltzmann Law

$$P = \sigma T^4$$

- Cloudy night
 - High Irradiance / High Temperature
- Clear Night (low humididty)
 - Low Irradiance / Low Temperature (feels cold)

- At night, Sky Irradiance and Surface Radiation generally dominate
 - Surface Radiation (grey body)

$$P = \varepsilon \sigma T^4$$

Berdahl and Martin 1984

$$T_{Sky} = T_{Air}[0.711 + 0.0056T_{DP} + 0.000073T_{DP}^2 + 0.013\cos(15t_{midnight})]^{\frac{1}{4}}$$

Terrestrial Radiation

- All matter above absolute zero emits long wave
- To include
 - Other buildings
 - Trees
 - The ground
 - Pavement
 - Etc.

Terrestrial Radiation

- Steep Roof obviously impacted
- Low slope roof
 - High parapet
 - Short or no parapet

Field Data

August 30, 2010 Membranes

12PM 11/26/10 to 12PM 11/27/10

12PM 11/26/10 to 12PM 11/27/10

8/11/10

Wednesday Night

MRCA PV / Thermocouple Test Bed F Manhattan, KS

White Modbit East

White EPDM East

White TPO East

Black EPDM East

Channel 1

Channel 5

Channel 13

43.9924

43.1913

44.9155 43.0764

Channel 2

Channel 6

|PV|

Channel 14

PV|

44.4543

P۷

44.3105

44.9694 PV

Channel 9

Channel 10

43.7384

Thursday Night

MRCA PV / Thermocouple Test Bed | Manhattan, KS

White EPDM East

: White TPO East

White Modbit East

Black EPDM East

Channel 1

Channel 5

Channel 13

47.2029

45.9544

49.8715

Channel 9

47.0301

Channel 2

Channel 6

Channel 10

Channel 14

P۷

47.1547 PV

46.8159

PV

49.9459

P۷

47.4779

Forced Convection!

Night time increase in ambient air temperature

October 24th. 2009 / Evening / West Slope

Conclusions

- Night time radiative cooling
 - Super cooling
 - Over cooling
- Appears to occur almost every night
 - Exceptions such as precipitation and snow cover
- Cooling observed in excess of 10° C / 20° F
- May need to reconsider minimum service temperatures for system design and energy calculations

Questions